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Abstract.

The paper analyzes in detail the problem of various plate models,

properties of their solution and the question how well these models

approximate the 3-dimensional formulation. The boundary layer and corner

singularities of the solution are analyzed. A hierarchy of the models

converging to the 3-dimensional solution is constructed. The detailed

numerical computations show various basic aspects of plate modeling in a

concrete setting.

Key Words: Plates, Kirchhoff model, Relssner-Ml-ndlin model, plate

paradox, corner singularities

1. Introduction.

The plate and shells are basic elements in structural mechanics.

Historically much attention has been given to the derivation of plate and

shell models which lead to the different solution depending on the model

used; see e.g. [1] for a survey. The derivation of a model is typically

based on various mechanical considerations and principles. Only in 1959 in

[21 was the first rigorous proof of the relation between the

three-dimensional solution and the plate model given.

Many papers then had analyzed the plate theories via asymptotic

an:!yqi.. See e.g., [3] and (4] and references there. Current development

)r.
of numerical methods leads to the understanding of the plate and shell

modeling as the application of the dimensional reduction principles to the 0

three-dimensional pru'ilr. This thcn -ado t3 a hizrachical modeling and to _ _

a convergent sequence of models. Adaptive approaches together with the

a-posteriori analysis of the error of the model is a realistic goal to be C Codes

id/or

al
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achieved.

The recent development of the h-p version of the finite element method

allows to create a natural hierarchy of models based on the polynomial

approximation through the thickness and the use of the variational

approaches. Such approximation is in a certain sense optimal. See e.g. [5].

The h-p version also allows for assessing the accuracy of the finite element

solution when compared with the exact solution of the plate model under

consideration, as well as the error when compared with the three-dimensional

solution.

In this paper we discuss the accurady of various plate models when

compared with the solution of the three-dimensional problem. Although the

3-dimensional solution is not exactly known, we can find it by numerical

means. The error lies in a tolerance bracket which is adjusted to the aims

of our analysis. Hence we can assume that the 3-dimensional solution is

available. The accuracy control is based on the comparison of the solution

for various meshes and degrees of elements. The computation was made by the

program MSC/PROBE with h-p capabilities.

Typically we deal with a uniformly loaded square plate, Ix I < 0.5,
1I

i = 1,2, with the plate thickness d = -0. Because of symmetries, the
100

problem is solved for the quarter only. The basic mesh in the quarter of the

plate is defined by the lines x, = Ci, x2 = i with various meshes

1) 25 elements:

91 = 0, 0.36, 0.492. 0.4994, 0.49988, 0.5

2) 36 elements:

9i = 0, 0.3, 0.36, 0.492, 0.4994, 0.49988, 0.5

3) 81 elements:

i= 0.15, 0.25, 0.36, 0.43, 0.47, 0.492, 0.4994, 0.49988, 0.5
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and additional mesh refinement in the corner if the solution is singular.

Also other plates shapes are considered in the paper. We assume homogeneous

isotropic material with Poisson ratio P = 0.3.

In Section 2 we define the plate problem as a three-dimensional problem

of elasticity and give basic preliminaries.

In Section 3 we define a hierarchical family of plate models.

Section 4 deals with the problem of the simply supported plate. In the

first part, 4.1, we discuss the definition of the hard and soft support for a

3-dimensional formulation. We introduce various theorems showing that as

d--0, the difference between the two supports disappears when measured in

the energy norm. A paradoxical behavior of the hard support shows that the

difference between hard and soft support need not necessarily be constrained

to the small neighborhood of the boundary. It depends on the structure of

the boundary of the plate. In 4.1 we discuss the singular behavior of the

three-dimensional solution in the neighborhood of the edges and vertices and

the behavior of the moments and shear forces computed from it.

Section 4.2 presents detailed numerical results for the uniformly loaded

square plate (in 3 dimensions) which serves in the next section as the exact

solution. We concentrate on the difference of moments and shear forces for

the soft and hard supports and descriptions of the boundary layer.

Section 4.3 describes the family of the dimensionally reduced problems

and formulates various pertinent theorems. The well-known Reissner-Mindlin

model appears as one member of this family. The theoretical behavior of the

solution of these models in the neighborhood of the domain corners is

presented.

Section 4.4 reports various numerical results. It shows the accuracy of

the solution of various models when compared with 3-dimensional solutions for

3



the hard and soft support. The boundary layer and the character of the

solution in the neighborhood of a vertex is addressed.

In Section 4.5, we address the problem of the L-shaped domain for the

soft simple support. The main emphasis is given to the theoretical and

numerical analysis of the solution's behavior in the ne'ghborhood of the

vertex with the concave angle. The main characteristic difference in the

comparison with the case of square domain is shown . It Is shown, among

other things, that the different models have solutions with the different

strengths of the singularity.

Section 4.6 analyzes the Kirchhoff model. It Is shown here, for

example, that the Kirchhoff model essentially approximates the hard support

and the classical computation of the reaction is an attempt to get the value

of the reaction for the soft support.

Section 4.7 summarizes the results presented in Section 4.

Section 5 discusses some other boundary conditions. In Section 5. 1 the

case of square clamped plates is analyzed. It Is shown among others, that

the Reissner-Mindlin model which captures well the boundary layer of the

3-dimensional solution for the simple support is completely missing a strong

boundary layer for the clamped boundary condition.

Section 5.2 addresses then the square plate which Is clamped on two

opposite sides and free on two opposite sides. Attention is given to the

behavior of the solutions of various models in the neighborhood of the

vertices.

Section 6, the final one, makes additional remarks and some basic

conclusions.
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2. Basic notations and preliminaries.

Let W e R2  be a polygonal domain with the boundary F and Q2 = {x =

(XlX e R3 E (XlEX) d < xe < d Q will be called the plate of

thickness d. Further let

S = {x e R3 1 (x , x2 ) E r, 2< x and

3 df

R. R 3 1 (I Cx x) eW
R± 1 2 E f, x3 =

By the (exact) solution of the plate problem, we will understand the

solution of the three-dimensional linear elasticity problem for an isotropic

homogeneous material when the equal normal load is acting on R±. More

precisely denoting T = (T1,T2,T3 ) the traction vector, we assume T = T =

0 on R± and T = x x e w on R±. On S various homogeneous

boundary condition, which will be specified later will be considered. By u

= {ui}, i = 1,2,3, and e = {eli}, i,J = 1,2,3, o {oij}, ij = 1,2,3

we denote the displacement vector, the strain tensor and the stress tensor.

Let A = {a }, i,j = 1,.... ,6 be the Hooke's law matrix (compliance

matrix) relating the strain and stress

" 11 "all a12 a13 0 0 0 Cl1

'22 a21 a22 a23 0 0 0 C22
(2.1) '33 a31 a32 a33 0 0 0 C33

W12 0 0 0 a4 4  0 0 C12

'23 0 0 0 0 a55 0 C23
S13 0 0 0 0 0 a66 C13

(2.1) will be written In the form

(2.2) o- = Ac.

5



In the case of the isotropic material we have in (2.1)

a a A+ 2p (1 - v)E
11 =a 2 2 -a 33 =A + 2v) = i - 2P)

12 1 '2 32(1 + v)(1 - 2 0uE
(2.3) a12 = a 1 3 = a2 3 = a21 = a3 1 = a3 2 = k=i1 v(-u

44 a5 5 = 66 1 - +

A,ji are the Lan6 constants, E is the modulus of elasticity, v is the

Poisson's ratio, and

PE E
(I + P)(1 - 2P)

Further we let

3

(2.4) A (u) = 2J ] o,e~j] dx
n i,j=l

( I ell +o 2 2 e2 2 + e + 2'12e + 223 e23+ 2(r e ldx
222.33 33 122 22 13 13j

be the strain energy expression. We use the notation c A(u) to emphasize

that (2.4) is based on A given by (2.1). By the total energy we denote

as usual

(2.5) GA(u) = CA(u) - Q(u)

where

(2.6) Q(u) _d f ( 3 x) 2 ) +u( 1  2 ~9dx

The exact solution u of the plate problem Is the minimizer of the total

energy over the set of functions H(Q) c (H (D))3  where J(Ml) constrains

6



(H (,,)) 3 on S (not on R±). The boundary conditions of the plate problem

are then uniquely characterized by the set H(Q).

3. The hierarchic family of Plate models.

By the plate model we mean a two-dimensional boundary value problem

which approximates the solution of the three-dlmenslonal plate problem

(defined in Section 2). By the hierarchic family of plate models we

understand a sequence of models which solutions converge to the exact

(three-dimensional) solution of the plate model and any model of the sequence

converges (after scaling) as d--O to the same limit.

The plate model from the hierarchic family Is defined as the minimizer

u (n) of the quadratic functional

(3.1) GB(u) = cB(u) - Q(u)

over the set X(n) c R(M) of the functions of the form

(3.2) u(n(x) u(n) (xx 2 Mx I = 1,2,3

j=O

n = (n,n 2 ,n3 ) and B is certain compliance matrix depending on n, which

could be different from A. The solution based on (3.1) and (3.2) will be

called the solution of the n-model.

Because of the assumptions about the symmetry of the load we made in

Section 2 we can assume

ulj = U2j = 0 for J even

and

u3j = 0 for J odd.

7



Often, instead of (3.2),

nj

(3.2a) U(n) W u (n) rXtx)
u1~ 2 (xiUj cx 2  j p( 1x3

J=O

is used. Here P is the Legendre polynomial of degree J. The solution

u(n ) using (3.2) or (3.2a) is the same because the span is the same. Form

(3.2a) is preferable especially when adaptive approaches are used.

Finally by Rk c X we denote the set of functions of the form

u(xl#x x) = - a-- I = 1,2
I 12P 3 x3,

(3.3)

u3(xlx 2 1x3 ) = u3 (xlx 2 )

with u 3(xlx 2) e H2(). Function uk  is then the minimizer of the

quadratic functional (3.1) over Rk (when using matrix B which will be

specified later).

It is obvious that the set X(n) is dense in M(f) as ni -) =

1,2,3 and hence A u(n)-u as nI---W, i = 1,2,3 with the convergence

in the energy norms. By index A in Au (n) we indicate that the matrix A

in (3.1) is used.

There is a vast amount of literature devoted to the derivation of

various plate models. We refer here to [1,3,41 and references therein.

4. The problem of the simplv supported, uniformly loaded (a(x)=l) plate.

In this section we still analyze various features of the plate problem

when the simple support, which is the typical one in engineering analysis, is

imposed at the boundary. In Section 5 we will address the plate problem with

some other boundary conditions and discuss the properties of its solution in

8



comparison with the solution of simply supported plates.

4.1 The (three-dimensional) plate problem and the basic properties of its

solution.

In this section we will address the three-dimensional plate problem and

the p-operties of itr solution. The solution will serve as the basis for the

assessment of the accuracy of various plate models.

The simple support is an idealization which has no standard definition

in the three-dimensional setting. We will consider here only two different

types of simple s,,"ports:

a) the soft simple support

1) the hard simple support.

The soft simple support Is characterized by the set RS(M) = {u e

(H1 (M) 31 u3 = 0 on S1 and the hardi simple support is characterized by the

set XH(O) = {u E (H'(9))31 u3 = 0, ut = 0 on S}. Here by ut we denote

the displacement in the tangential direction cn r, i.e. ut = u t 1 +u 2 t2

where t = (tpt 2 ) is the unit tangent to r. In the vertices of w (w is

assumed to be a polynomial domain) no constraint condition is prescribed.

1 3
Because u E (H IX) the constraint is interpreted in the usual traoc

sense.

The basic physical "nterpretation of both boundary conditions is

obvious. In the case of the soft support, no tangential shear stresses are

present, while in the case of hard support the tangential stresses lead to

the twist moment reaction.

Let us first discuss the differences between the two mentioned cases of

simple support for d small.

Theorem 4.1. Let u and u H be the solution of the plate problem with the

thickness d for the soft and hard support cases, respectively. Then

9



4Acu - uH) 1/2

(4.1) C~A Ju Ud sd )
Cud)

The proof follows by arguments used in [2] [6].

Because It' > RH we have cA(uS) d A~u ) Ad )d 2

1/2ddLe du J

eAuS)- A()]u  Theorem 4.1 shows that the difference between both

supports measured in the (relative) energy norm converges to zero as d--0.

It is necessary to underline that this holds for the energy norm and not for

all other norms as will be seen later. The main difference between the two

supports Is the behavior of the solution in the neighborhood of S. The size

of this neighborhood depends on the relation between the plate thickness d

and the smoothness of r. The following example shows that.

Let us consider w to be a regular m-gon Inscribed in the unitm

circle C as shown In Figure 4.1.

X2

C

Figure 4.1. Scheme of the m-gon wm, (m = 6).
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Denote by u and S m, respectively, the (three-dimensional) solutionDente y d, m Ud, m
H S

for the hard and soft support for the m-eck w3. By Udc and Udc we

denote the solution on C x (-, 2] where on rx (_, te d

soft supports, respectively, are imposed. The solution is defined

analogously as the minimizer of the energy over 3fH or 3(S. We then have

Theorem 4.2. For any 0 < d < do $

S S
lim Ud, m )Udc

lim uH  H
d,m )Ud,c * Ud,c

The convergence is understood in the energy norm on 0 . For the proofm

see

[6]. 3

It is possible to compute the value

S H
(ur) = lIm lim 1U.d(0,O,O) - umd(o,O,O)1

d.--)O m--.w 1u, (0,0,0)1

g(0.3) = 0.264

(We have lim lu ,(0,0,0)1 > lim tu H (00,01)
mW m, d MW m ,d

Theorem 4.2 shows that when m is large with respect to d then the

neighborhood of S where there is significant difference between hard and

soft support solution can "fill" the entire Q.

The boundary of the plate Q has edges and vertices. Local behavior of

the solution of the plate problem in the neighborhood of these edges and

vertices is well-known. See for example [7] and [8].

11



Let us consider .'irst the horizontal singularity. To this end let us

assume that r is a side of the polygon w and r = {Xlx 2 1 xl' < a,

x = 0}. Then the (horizontal) edge is E, = {xlX 2 x3 1(xlx 2 ) e r1 x3 =

d
-} In the neighborhood of E we have

U1 (X1,x2,X3 ) = + smoother term

(4.2) u2 (x1 ,x2 ,x3 ) = C(x1 )r,02 (e) + smoother term

u3(xlpx x3 ) = C(x )rA3(0) + smoother term

where (r ,6) denotes the polar coordinates in the plane x2,x3 with the

origin in E1. Functions #2 and #3 are analytic in 6 and function

C(x1 ) Is smooth on (open) interval -a < x1 < a. In (4.2), the smoother

term ajeans a function which is smoother in the neighborhood of E1 than the

functions r i(e), I = 2,3. For the hard and soft support we have A =

0.71117 (independently of the Poisson's ratio ). Because A < 1, the

stresses are unbounded in the neighborhood of E Nevertheless the moments

d/2
(4.3) Mj (xl,x 2 ) = J o1jX3 dx3 ,  IJ, = 1,2

-d/2

and the shear forces

d/2
(4.4) (13, (xI#x2) f o ij dx3 , I = 1,2

-d/2

are bounded In the neighborhood of F (except possibly the vertices of

rI).

Consider now the vertical edge E2 . E2 = {xI = 0, d I
2 2 1 x2 = 0, 1x31 < 2f

when we assumed that the vertex of w lies in the origin. We will assume

that the internal angle at this vertex Is a, 0 < c S 2n. In the

12



neighborhood of E2  we have

u (x1 1 x2 ,xS ) = C (xs)r 1 1 (0) + smoother term

(4.5) u2 (xl,x 2 ,x3 ) = C1(x3 )r 2 (6) + smoother term

u 3(x1,x2 x3 ) = C2(x3 )rX20(e) + smoother term

Here (r 2,) are the polar coordinates in the x1,x2 plane, *1(8) and

() are analytic in , and C1 (X3 ) and C2 (x3 ) are smooth on [-ff ]
with possible singular behavior at +d

Coefficients AI and A2  and functions O, 0 depend on a and the

type of boundary conditions. Coefficient A1 can be complex. Then there is

a pair of conjugate coefficients because (4.5) has to be real.

u(xlX 2, x3 ) = C(X 3 )r2 Al sin(53 ImAllgr) #i(e)

+ C1(X )r Al cos(Y ImAllgr) 1 (e)

+ smoother terms

and analogously u2 (xl,x2, x3 ).

The coefficients A1 ,A2 can be Integers or they can be of multiplicity

>1 for some angles a. Then these angles are exceptional and in general the

A A S
term r has to be replaced by r (lgr)S , S an integer. Only a finite

number of exceptional angles exist. In the neighborhood of these exceptional

angles the singular behavior Is not continuous with respect to the a. We

will not address here these cases although they will also occur In some of

our examples.

In Table 4.1 we show the values of A and A2  In (4.5) for hard and

soft supports for various angles a. They are independent of the Poisson's

13



ratio u. We see that the angles a = 30: 45: 900 are exceptional because

A2  Is an Integer. The angle 3600 leads to the multiplicity two. For a =

30-135 the coefficient A1 in the table for the soft support case are

complex. For more see (9].

Table 4.1 The coefficients A1 and A2 in (4.5) for the hard and soft

support.

Al A2

HARD SOFT HARD SOFT

8.0630
30 3.4846 + 6.0000 6.0000

1 4.2028

5.3905
45 2.4129 + 4.0000 4.0000

i 2.7204
2.7396

90 1.4208 + 2.0000 2.0000
i 1.1190
2.0941

120 1.2048 + 1.5000 1.5000
1 0.6046

1.8853
135 1.1368 + 1.3333 1.3333

1 0.3606

150 1.0832 1.5339 1.2000 1.2000

225 0.7263 0.6736 0.8000 0.8000

270 0.5951 0.5445 0.6667 0.6667

315 0.5330 0.5050 0.5714 0.5714

360 0.5000 0.5000 0.5000 0.5000

We see that for some angles we have A < 1 and hence in these cases the

stresses are unbounded as r2 -)0. We have then

14



(4.6) MIj = C 1 ij(e) + smoother terms, i,j = 1,2

(4.7) = Cr;2-1 (e) + smoother terms, J = 1,2

We mention that the expressions (4.6) and (4.7) do not follow directly from

(4.5) because the solution has other singularities in the vertex and also

C1(x3 ) In (4.5) can be singular for x3 = - Nevertheless these

singularities are weaker and do not influence the form (4.6) (4.7).

The expressions (4.6) and (4.7) show that the moments and shear forces

in the neighborhood of the vertex of w can be unbounded. For example, this
o

happens when w Is an L-shaped domain and a = 270". The shear forces have

the same strength of the singularity for the hard and soft support, while the

singularity of the moments is different for the hard and soft support. Fur-

thermore, the singular behavior is different for the moments and shear

forces. The mentioned behavior described by (4.6) and (4.7) is valid only

for r € d as will be seen later in Section 4.5.

It is interesting to mention that the differences in the singular

behavior of the hard and soft supports do not explain Theorem 4.2, whose

proof is based on completely different principles.

4.2 The (three-dimensional) problem of a simply supported, uniformly loaded

sauare plate. Numerical results.

In this section we will present numerical results of the analysis of the

square plate.

Let w = {x1 ,x2  xj < 0.5, x2 < 0.5) and let d and2 lxi l 100

consider the three-dimensional problim with P = 0.3. In this case a = 900

and hence from Table 4.1 we conclude that the moments and shear forces are

bounded and are sufficiently smooth up to the boundary.

15



The main question we will consider in this section is the difference

between the solution when the hard and soft simple support is prescribed

on S. The solution is obviously symmetric with respect to the axes x1 and

x2 and hence orly a quarter of the plate will be considered.

First we consider the behavior of the twist moment M 12(xx 2) for

= 0.4, x1 = 0.5 as a function of the variable x2. Denoting M12 and

MS2 respectively, the twist moments for the hard and soft support, we
12'

have M1 (x , 0.5) = 0 while MH1 (xl, 0.5) 0 0. This indicates that the
12 1 12 1'

boundary layer has to be present because of Theorem 4.1 which shows that the

difference of both solutions converges to zero as d-)0.

In Table 4.2 we show the values of the twist moment M C2(XlX ). We

clearly see that the boundary layer is of order d.

Table 4.2 The twist moment M12 (xl,x2) x = 0.4, 0.5 for the hard and

soft support.

2 =0.4 x = 0.5

HARD SOFT HARD SOFT

0.0 0. 0. 0. 0

0.02368 0.0018 0.0019 0.0020 0

0.11842 0.0092 0.0092 0.0097 0

0.21316 0.0162 0.0163 0.0172 0

0.45000 0.0289 0.0292 0.0315 0

0.48079 0.0294 0.0297 0.0323 0

0.49026 0.0295 0.0285 0.0324 0

0.49500 0.0295 0.0237 0.0325 0

0.49713 0.0295 0.0179 0.0325 0

0.49903 0.0295 0.0080 0.0325 0

0.49950 0.0295 0.0045 0.0325 0

0.50000 0.0295 0. 0.0325 0

16



Remark. The exact solution is not known. Nevertheless the data we report

are reliable. They were computed by refined meshes, and high degree elements

with an analysis of the accuracy.

Figure 4.2 shows MH1 (0. 4, x) with maxMH (0. 4, x) = 0.0295 and
12 '2 12 '2

MS (0. 4, ) with xMS.(0.4, x 0. 0297.
12 '2 12 04x 2) .27

cq

! 0.03

0

.HARD: 0.029

z SOFT: 0.0297
0.01 - H R

E SOFT0 0

0 0.1 0.2 0.3 0.4 0.5

2

Figure 4.2. The moments M (0.4, x ) and MS- ((0.4, x for the
12 2 12 , 2)frh

3-dimensional problem.

The shear forces Q3j(xpx 2 ), J = 1,2 show the similar boundary layer we

mention that H%2 (x, 0.5) = 0 while % 2 (Xl, 0.5) * 0.

17



Table 4.3. The shear force Q3j(xl,x 2 ), j = 1,2, x, = 0.4, 0.5 for the

hard and soft support.

X= 0.4 X= 0.5
x 2 Q 1 Q 2 Q 1 Q 2

HARD SOFT HARD SOFT HARD SOFT HARD SOFT

0.0 0.2460 0.2446 0. 0.0 0.3373 0.4206 0.0 0.0

0.02368 0.2451 0.2445 0.0041 0.0041 0.3373 0.4206 0.0 -0.6433

0.11842 0.2347 0.2346 0.0215 0.0214 0.3260 0.4080 0.0 -3.1986

0.21316 0.2086 0.2086 0.0386 0.0386 0.2973 0.3740 0.0 -5.6633

0.45000 0.0526 0.0503 0.1274 0.1274 0.1073 0.1326 0.0 -10.4513

0.48079 0.0207 -0.0046 0.1526 0.1526 0.0534 -0.1334 0.0 -10.6353

0.49026 0.0107 -0.4193 0.1606 0.1633 0.0306 -0.8126 0.0 -9.9046

0.49500 0.0053 -1.9206 0.1660 0.1760 0.0184 -2.1746 0.0 -8.6002

0.49713 0.0030 -3.7753 0.1680 0.1880 0.0133 -3.5240 0.0 -7.7056

0.49903 0.0012 -6.9740 0.1701 0.2066 0.0038 -5.4623 0.0 -6.9546

0.49950 0.0005 -8.1673 0.1706 0.2133 0.0019 -6.0693 0.0 -6.8382

0.50000 0.0 -9.7186 0.1713 0.2213 0.0 -6.7933 0.0 -6.7933

In Figures 4.3 and 4.4 we show Q13 (0.5, x2) (= reaction) and

0.3(0.5, x 2 ) for the soft support.
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Figure 4.3. The shear force Q31(0. 5 ' x2 ) for the soft support

(three-dimensional problem).
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Figure 4.4. The shear force Q32(0.5, x2) for the soft support

(three-dimensional problem).
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Tables 4.2, 4.3 and Figures 4.2, 4.3, and 4.4 show that the difference

between hard and soft support resides In the boundary layer behavior. The

hard support does not have a boundary layer and can serve as a smooth exten-

sion to the boundary. To understand the boundary layer more precisely we let

142 (XI- 0. 5) 'L1i2)

and

(91 (xIx 2 ) - Q31 (x
I x 2) exp _31 (xl,x2)(O'd -X2)

Q3 1 (XI, 0.5)

Table 4.4 shows some values of 112 (xlx 2 ) and g31(XlX2

Table 4.4 The functions P12 (XlX 2 ) and 831 (Xltx 2 ).

_xt = 0.4 x, = 0.49 x, = 0.4 x, = 0.49 x= 0.5

0.49263 3.34 2.74 3.22 3.72 2.17

0.49500 3.28 3.10 3.24 3.53 2.27

0.49666 3.26 3.18 3.28 3.53 2.28

0.49878 3.27 3.30 3.40 3.62 2.23

0.49950 3.31 3.34 3.51 3.73 2.22

0.49989 3.46 3.49 3.62 3.84 2.22

0.49991 3.52 3.54 3.63 3.84 2.21

0.49994 3.62 3.64 3.63 3.84 2.21

In Figure 4.5 we show the function 831 and in Figure 4.6 we show the

We see that the 131 and g32 increases when x 2--+0.5. This is typical

for the three-dimensional formulation where essentially infinite number of

20



boundary layers are present but here only the first one is visible. Also

typical is the discontinuity of %31(x.x 2) when x - )0.5. We see that

for x, = 0.5 the value of 031 Is significantly smaller than for x, =0.49.

4
,x =0.49.i/ 3.84

3.64
3 "x =0.41 c

Sx1=°'5

2 -- " 2.2 1

0.490 0.492 0.494 0.496 0.498 0.500
- X2 -.

Figure 4.5. The function R 3 1 (xlx 2) for x = 0.4, 0.49, 0.5

(three-dimensional formulation).

4

,x1 =0.4
____ _--.-__3.62

3

2 
I

0.490 0.492 0.494 0.496 0.498 0.500
- X2 --.

Figure 4.6. The function 112 (xl,x 2 ) for x, = 0.4

(three-dimensional formulation).
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The shear force Q31(0.5, x2) is the reaction of the plate. We see from

Fig. 4.3 and Table 4.3 that for the soft support this reaction is negative in

the neighborhood of the vertex x2 z 0.5. This relates to a well-known effect

in the Kirchhoff theory (see Section 4.6). It is interesting to define

i f Q31 ( ° ' 5' x2 ) dx2
I

where I = {0 < x2 < 0.5 1 Q31 (0.5,x2 ) : 0). We get in our case A = 0.0290.

The data we present here are for d = 100 " 1 (0.t, 0.5)d-

i53, 1 (0., 0.5), as d---0 where Q, Is a certain value which we expect

to be approximately 0.068, although the authors do not know whether a

rigorous proof of it exists. Analogously It-- as d--0. We expect

that R = 0.029 which is different from the value 0.0325 arising from the

Kirchhoff model (see Section 4.6).

The boundary layer is also visible Ii, the energy of the solution. We

1
have in our case d - 100

(u )11/2

A= 0.895

and hence the difference between hard and soft support measured in the energy

norm is 9%. Of course as d--0 the energy norm of this difference

converges to zero due to Theorem 4.1. We discussed only the square plate

here. If the plate Is rhombic then the difference between the hard and soft

support Increases.

4.3 The dimensionally reduced models.

We will consider here the n-model introduced in Section 3 which is based

on the minimization of the quadratic functional G B(u) given in (3.1) over
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the set of all functions of the form (3.2) constrained in the space R(Q).

We have now:

Theorem 4.3. Let n = (nl,n2,n3), n, ? 1, n2 a 1, n3 2 2. Denoting by

Aud(n) the plate model based on (3.1) (3.2) with B = A (A given by (2.1)

(2.3)) then for both types of simple support we have

(4.8) ~ AAn -U)A4.8) C -U Ud) - 0 as d-0
C (Ud)

The proof follows by using arguments in [6]. o

The assumption that n3 2 2 in Theorem 4.3 is essential. If n3 = 0

and v = 0 then (4.8) still holds but when v > 0 (4.8) does not hold.

This means that the case n3 = 0 with the matrix A cannot be used except

when P = 0. Hence the following problem arises: Find a class B of

matrices B which when used instead of A leads to

_. ABun -11/2
(4. 8a) [C(A ud - Ud) 0 as d-*O

.£ C ud) J
Bn

Here by ud we denoted the minimizer of (3.1) with n = (1,1,0) and matrix

B instead of A.

The class S which guarantees (4.8a) is the class of matrices (4.9).

23



E uE 2 0 0 0 01-V 2  1-V 2

E E2 2 0 0 0
1-V 1-V

E
S00 0 0

(4.9) B 1=

0 o 0 0 0
+1+

0 0 0 0 0 EX
l+V

Here E and v are the modulus of elasticity and the Poisson's ratio and

X > 0 is an arbitrary parameter. We have,

Bn
Theorem 4.4. Let n = (1,1,0) and let u be the minimizer Of (3.1) (3.2)

with the matrix B given by (4.9). Then for both types of simple support we

have

cA( Bun 1/2

(4.9)Ud) d)J - 0 as d-)0

The proof follows by the arguments used in [6]. C3

The coefficient If in B does not influence the validity of (4.9) but

Bn Bn
it influences the size of the difference Ud -Ud The solution ud (n-

(1,1,0)) is the famous Reissner-Mindlin solution. The recommendation for

the selection of X was made by various authors. In [10] the value 5/6 Is

recommended. In the connection with wave propagation in [11], suggested

values range almost from 0.76 for P = 0 to 0.91 for u = 0.5. Another

recommendation is made e.g. In [121. X(0) = 0.833, X(0.33) = 0.850, 3R(O.5)

- 0.87. We will address this question later in the numerical way.

Let us mention that for any n-model with n3 k 2, using the matrix B
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will not lead to (4.9).

The n-model reproduces Theorem 4.2. We have,

Theorem 4.5. Let n3  2 with using A or n3 = 0 using B. Then for any

d~d 0

11M un )S  u n)S

den Wd, c

r~A k--11/2

l(m )n)S (n) u(n)
M4Ud , n d'c d,c

For the proof, again see [6]. 0

Using matrix B and (3.3) together with (3.1) (3.2) we obtain the

Kirchhoff solution ud and

Theorem 4.6. We have

See [6] for proof. 0

The Kirchhoff model cannot distinguish between the soft and hard

support (see Section 4.6 for more) and the second part of Theorem 4.2 holds

for the Kirchhoff model too. Various paradoxical properties of Kirchhoff

model for simple support were discussed in [6,13,14].

The n-model solution has a boundary layer. In [151 and [16] the boundary

layer of the Reissner-Mindlin solution was rigorously analyzed in detail when

w has smooth boundary. The rigorous analysis of the boundary layer structure

of the solution for a domain w with plecewise smooth boundary is not avail-

able. For additional analyses see also [17]. The solution from the Kirchhoff

model has no boundary layer.

From (4.9) and (4.10) it follows that the Reissner-Mindlin solution con-
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verges in energy to the Kirchhoff model. Nevertheless we underline that this

Is only in the energy. At the boundary the convergence does not occur. Using

the analytical results in [151 for infinite half-plane this can be easily

analytically demonstrated.

In Section 4.2 we analyzed the singular behavior of the plate solution In

the neighborhood of the corners of the domain. We especially addressed in

(4.6) (4.7) the singularity of MIj and QJ as functions of internal angle

:. The Reissner-Mindlin model, n-model, and Kirchhoff model solution also

lead to the singular behavior of MIj and QIj" The forms (4.6) (4.7) are

also valid here, i.e. we have

A(n)-1
H = CIr2

1  *i (e) + smoother terms, i,j = 1,2

(n )

Q:3J = C2 r 22 -1$ oj(e) + smoother terms, j = 1,2

In general A(n) depends on n, i.e. on the model, and they are different

for different models and for different types of boundary conditions. In Table

4.1 we gave the values of A1 , I = 1,2 for the three-dimensional problem.

In Table 4.5 we list the coefficients A for the n-models and Kirchhoff

model for the soft support and hard support analogously to Table 4.1. We

mention that the Kirchhoff model does not distinguish between the hard and

soft support.

Table 4.5 The coefficients A and A2 for the hard and soft for various

models.
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A1  A2

HARD SOFT HARD SOFT

RM (1,1,2) RH, (1, 1,2) K R, (1, 1,2) K
3 dim 3 dim 3 dim

8.0630
30 3.7972 3.4846 + 5.0000 6.0000 4.0000

1 4.2028
5.3905

45 2.6083 2.4129 + 3.0000 4.0000 2.0000
1 2.7204

2.7396
90 1.4905 1.4208 + 1.0000 2.0000 0.0000

1 1.1190

2.0941
120 1.2404 1.2048 + 0.5000 1.5000 -0.5000

1 0.6046

1.8853
135 1.1609 1.1368 + 0.3333 1.3333 -0.6666

1 0.3606

150 1.0978 1.0832 1.5339 0.2000 1.2000 -0.8000

225 0.7354 0.7263 0.6736 0.2000 0.8000 -0.8000

270 0.6040 0.5951 0.5445 0.3333 0.6667 -0.6667

315 0.5379 0.5330 0.5050 0.1428 0.5741 -0.8572

360-0 0.5000 0.50000 0.5000 0.0000 0.5000 -1.0000

For a = 3600 we list the limiting value a = 360-0 which is not equal

to the value a = 3600. We see that for the hard support the Reissner-Mindlin

model and (1,1,2) model give slightly different values while the Kirchhoff

model yields very different singularity coefficients. For the formula for

these values we refer to (9].

4.4. The n-model of simply supported uniformly loaded square plate.

Numerical results.

In this section we consider the same problem as in Section 4.2 namely
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the square plate d - 1= 0.3 and soft and hard simply support.
100

7
Further we will assume that E = 10

As we mention in Section 4.3 the Reissner-Mindlin model (n = (1,1,0))

depends on Lha value of the parameter X. Let us first show the deperdence

of the energy c(M) (of the quarter of the plate) on the value of X for

various models. Denote further the quantity

1/2C = lle(;) - c( l )ll2c(3 dim) l

= c3 dimI]

The values of c(R) and c for the soft support is shown in Table 4.6.

We see that by using different values of the parameter X, the energy of

the RM model can be over or under the true 3-dimensional energy. The energy

in the case (1,1,2) is smaller than the energy of the RM solution for X = 1.

If P = 0 then for It = 1 we get A = B and the energy of (1,1,2) model

would be larger than that of the RM model. It seems remarkable that the per-

5
formance of RM model (for this particular case) is better for all 5 : H< 1

than that of the model (1,1,2) and H = 1. This conclusion is not valid in

general for all boundary conditions. The model (3,3,4) (H = 1) gives then

the better results than the RM model.
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Table 4.6 Energy c(R) as a function of X and different plate models for

the soft support

xC() x 103 c% Model

1 0.234563 2.69 RM

0.91 0.234674 2.26 RM

0.87 0.234729 0.41 RM

0.845333 0.234765 1.16 RM

5/6 0.234783 1.46 RM

1 0.234528 2.95 (1,1,2)

1 0.234731 0.29 (3,3,4)

1 0.234732 0.01 (5,5,6)

0.87 0.234693 1.3 (1,1,2)

0.87 0.234913 2.76 (3,3,4)

0.87 0.234914 2.78 (5,5,6)

Kirchhoff 0.232392 9.98 K

3 dim 0.234735 --

Table 4.6 has addressed the soft support. Table 4.7 addresses the hard

support.

Table 4.7 The energy for the various models for the hard support.

x x 103  C% Model

0.87 0.232524 1.22 RM

1 0.232472 0.85 (1,1,2)

1 0.232489 0.01 (3,3,4)

1 0.232489 (5,5,6)

Kirchhoff 0.232392 2.04 K

3 dim 0.232489
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We see that for hard support the performance of the model (1,1,2), x = 1 is

better than of RM model with X( = 0.87, which Is in contrast with the soft

support. Let us also underline that the energy of RM model with X = 0.87 is

larger for hard support than that of the energy of the 3-dimensional solution.
5

The same occurs for X1 = 5 and soft support.

In Table 4.6 we also report the values of the (nln 2, n3 ) model when

= a55 = - H with X = 1 and 3 = 0.87. We see that it is advantageous
a44 =a., 1 + V'

for the model (1,1,2) but detrimental for higher models compared with the

solutions of the 3-dimensional plate model.

In Table 4.8 we show the value of the shear force Q31 on the diagonal

x, = x2 and the error when compared with the solution of the 3-dimensional

plate model.

Table 4.8 The shear force Q31 and its error on the line x = x2 for the

soft support.

R= 1 x =0.91 X = 0.87 x 5/8
X3 = X2  dim _

Q31 C% 3X Q3Q1 C Q31 C%

0.4905 -0.29 -0.22 24.9 -0.26 11.9 -0.28 5.3 -0.29 0.92

0.4950 -1.55 -1.46 6.0 -1.52 2.3 -1.55 0.7 -1.57 0.77

0.4968 -2.78 -2.79 0.4 -2.80 0.8 -2.81 0.9 -2.81 0.81

0.4986 -4.75 -5.01 5.5 -4.87 2.6 -4.81 1.3 -4.75 0.07

0.49905 -5.37 -5.70 6.1 -5.51 2.5 -5.41 0.9 -5.33 0.76

0.49995 -6.70 -7.08 5.6 -6.77 0.9 -6.62 1.4 -6.49 3.31

0.5 -6.79 -7.16 5.5 -6.83 0.7 -6.68 1.4 -6.54 3.53

In what follows we always use In the RM model the value of X = 0.87,

unless otherwise stated.

In Tables 4.9a and 4.9b we show the moment M12 computed by the RM (X =
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0.87) and (1,1,2) (H = 1.00) model for the hard and soft support.

Analogous results are given in Table 4.2 for the three-dimensional solution.

In the table we also show that relative error c in comparison with the

three-dimensional solution whenever it is larger than 0.1%. In the case of

hard support, both RM and (1,1,2) models have error < 0.1%. It is

interesting that the model (1,1,2) produces a larger error for the soft

support moment M12 than the RM model. Model (3,3,4) would give better

results than the RM model.

Table 4.9a The moment M12 (xlX 2 ), x1 = 0.4 for hard and soft support.

x, = 0.4

X2  HARD SOFT

RM (1,1,2) RM CRHM (1,1,2) c11 2%

0. 0. 0. 0. 0. 0. 0.

0.02368 0.0018 0.0018 0.0018 0. 0.0018 0.

0.11842 0.0092 0.0092 0.0092 0. 0.0092 0.

0.21316 0.0162 0.0162 0.0163 0. 0.0163 0.

0.35526 0.0252 0.0252 0.0254 0. 0.0254 0.

0.45000 0.0289 0.0289 0.0292 0. 0.0292 0.

0.48079 0.0294 0.0294 0.0297 0. 0.0297 0.

0.49026 0.0295 0.0295 0.0286 0.3 0.0283 1.1

0.49500 0.0295 0.0295 0.0239 0.7 0.0246 3.4

0.49713 0.0295 0.0295 0.0180 0.9 0.0188 5.03

0.49903 0.0295 0.0295 0.0087 0.3 0.0085 6.3

0.49950 0.0295 0.0295 0.0045 0. 0.0047 6.0

0.50000 0.0295 0.0295 0. 0. 0. 0.
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Table 4.9b The moment H2 (xl,x2), x, = 0.5 for hard and soft support.

x= 0.5

X 2  HARD SOFT

RH (1,1,2) RH (1,1,2)

0. 0. 0. 0. 0.

0.02368 0.0019 0.0019 0. 0.

0.11842 0.0097 0.0097 0. 0.

0.21316 0.0172 0.0172 0. 0.

0.35526 0.0270 0.0270 0. 0.

0.45000 0.0315 0.0315 0. 0.

0.48079 0.0323 0.0323 0. 0.

0.49026 0.0324 0.0324 0. 0.

0.49500 0.0325 0.0325 0. 0.

0.49713 0.0325 0.0325 0. 0.

0.49903 0.0325 0.0325 0. 0.

0.49950 0.0325 0.0325 0. 0.

0.50000 0.0325 0.0325 0. 0.

In Tables 4.10a and 4.10b we show analogous data for the shear forces.

Once more we see that for hard support the accuracy is high for RM and

(1,1,2) model. Otherwise we see once more that the values are better for RM

model (H = 0.87) than for the (1,1,2) (H = 1) model.

We will see in Section 5 that this conclusion is not necessarily correct

for other boundary conditions.
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Table 4.10a The shear forces 31 (x1 ,x2), xI =0.4

x= 0.4

Q31

X 2  HARD SOFT

RM (1,1,2) RM £HRMY (1,1,2) c1 12 %

0. 0.246 0.246 0.246 0. 0.246 0.

0.02368 0.245 0.245 0.245 0. 0.245 0.

0.11842 0.234 0.234 0.234 0. 0.234 0.

0.21316 0.209 0.208 0.208 0. 0.208 0.

0.35526 0.134 0.134 0.134 0. 0.133 0.

0.45000 0.053 0.053 0.056 0. 0.055 0.

0.48079 0.021 0.021 0.001 - 0.006

0.49026 0.011 0.011 -0.403 3.8 -0.343 18.1

0.49500 0.005 0.005 -1.912 0.4 -1.822 5.1

0.49713 0.003 0.003 -3.817 1.1 -3.824 1.3

0.49903 0.001 0.001 -7.047 1.0 -7.379 5.8

0.49950 0.000 0.000 -8.214 0.3 -8.695 6.3

0.50000 0. 0. -9.639 0.8 -10.323 6.3
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Table 4.10b The shear forces %31(N Vx 2) and % 2 (x 1 x2 ). X, = 0.5

X= 0.5

Q31 Q32

X2SOFT ____ ____ SOFT

RM CR1/s (1,1,2) £112%. RH CRM% (1,1,2) C112%

0. 0.419 0. 0.419 0. 0. 1 0.-

0.02368 0.421 0. 0.421 0. -0.638 0.8 -0.685 6.2

0.11842 0.408 0. 0.408 0. -3.173 0.8 -3.399 6.2

0.21316 0.374 0. 0.374 0. -5.617 0.8 -6.018 6.2

0.35526 0.273 0. 0.273 0. -8.*844 0.8 -9.474 6.2

0.45000 0.133 0. 0.135 1.5 -10.363 0.8 -11.095 6.2

0.48079 -0.125 - -0.105 - -10.559 0.6 -11.332 6.5

0.49026 -0.807 0.6 -0.756 6.9 -9.844 0.6 -10.651 7.5

0.49500 -2.188 0.6 -2.157 0.8 -8.505 1.1 -9.251 7.5

0.49713 -3.573 1.3 -3.645 3.4 -7.569 1.7 -8.221 6.6

0.49903 -5.499 0.6 -5.815 6.3 -6.881 1.9 -7.368 6.0

0.49950 -6.073 0.7 -6.485 6.5 -6.721 1.7 1-7.252 6.4

0.50000 -6.678 1.5 -7.221 6.5 1-6.678 1.5 -7.221 6.5

In Table 4.11 we show the values of Q31(0.5, 0.5) for soft support for

various models.
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Table 4.11 The value of Q31(0.5, 0.5) for soft support and various plate

models.

Q31 c% Model

1 -7.15 5.6 RH

0.91 -6.83 0.8 RH

0.87 -6.68 1.5 RH

0.845333 -6.61 2.8 RH

5/6 -6.54 3.4 RH

1 -7.22 6.5 (1,1,2)

1 -6.82 0.6 (3,3,4)

1 -6.80 0.3 (5,5,6)

0.87 -6.73 0.9 (1,1,2)

0.87 -6.36 6.3 (3,3,4)

0.87 -6.34 6.6 (5,5,6)

3 dim -6.97 -

We see that for the RH model X > 0.87 is optimal. For the (n,n,n+l) model

optimal X( a 0.87 for all n and as n increases the optimal X

approaches 1 and the model (1,1,2) (R = 0.87) leads to smaller error than

RM model with 3 = 0.87.

In Table 4.12 we show the function 131 for the RM model (R = 0.87)

and (1,1,2) model with J = 1 which are defined In the same way as in Table

4.4 for the (three-dimensional) plate model.
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Table 4.12 The values of %31(x1 ,x2), xI = 0.4, 0.5 for various models

(soft support)

x, =0.4 x, =0.5

RM (1,1,2) RM (1,1,2)

0.49263 3.25 2.48 2.21 2.37

0.49500 3.24 3.47 2.23 2.41

0.49666 3.24 3.47 2.20 2.39

0.49878 3.23 3.47 2.04 2.24

0.49950 3.23 ?.47 1.91 2.12

0.49989 3.24 3.47 1.83 2.03

0.49991 3.24 3.47 1.83 2.3

0.49994 3.23 3.47 1.83 2.03

It has been shown in [15] and [16] that when the boundary is smooth the

strength of the boundary layer for the RM model is A31 = V= 3.23.

The detailed theoretical analyses of the boundary layer behavio, of the

(1,1,2) model is not available. In [171 was suggested that R31(0.5, x2 )

J/-" = 2.28 for the RM model.

To the authors' knowledge there is no rigorous analysis of the boundary

layer in the neighborhood of the corners of w for RM or any other model.

We have seen that as d-0 the difference between the soft and hard

support disappears when measured in the energy norm. This is not true for

the values influenced by the boundary layer. In Thble 4.15 we show for the

5
RM model with X = the values Q31(O.S, 0.6) and dQ31(0.5, 0.5) for d

= 0.025 and d = 0.01 for the soft support.
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Table 4.13 The values of Q31(0.5, 0.5) as function of d

d Q31(0.5, 0.5) dQ3 1(0.E,0.5)

0.025 -2.68 -0.0671

0.01 -6.54 -0.0614

We see that dQ31 converges as d--0 as expected (but not

theoretically proven). We can expect (see (17]) that for the RM model

Q31(0.5, 0.5) Is proportional to /-. In Table 4.14 we show that the

expectation Is correct.

Table 4.14 The dependence of Q31(0.5, 0.5) on It for the RM model.

Q31(0.5, 0.5) X_-1/2Q t(O.5 , 0.5)

1.0 -7.15 -7.15

0.91 -6.83 -7.16

0.87 -6.68 -7.16

5/6 -6.54 -7.16

4.5 The problem of the L-shaped domain.

In the previous Section we discussed the problem of the square plate.

In this section we will briefly discuss the problem of the simply soft

supported L-shaped plate. The domain w Is shown In Figure 4.7.
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X2

eq

x 1

Figure 4.7 The L-shaped domain.

Once more we will consider the case d = 0,01 and v = 0.3. We will

concentrate here on the behavior of the solution in the neighborhood of the

origin where the solution Is singular. We will present only the results of

RM model for R = 0.87. Table 4.5 shows the theoretical strength of the

singularities for the RM and K model for soft support (a = 270*).

3 x
1 tx. Q32

4z0 10rZ4 ?x-
5x10 3 -Q 31 'x

310

1 0 3 , 1 - 7  1 o -6 1 - 5 1 o 0

- x 2u

Figure 4.8 The shear force Q31(0, x2 ), Q32(0 x2 ) for the RM model.
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Figure 4.8 shows in log log scale the shear forces on the line x, = 0 (as a

function of x2). In the figure we also show the expecLed theoretical slope

(0.3333).

Figure 4.9 shows the values of the moments 1422 and M12 as well as

the theoretical slope. We see that the singularity is different for the

moments and the shear forces.

3 x 102-- ,
3XI2"x V -" ,
2x2

12' <M22

x 0.455 1.-

.1o -

10 . 45 1 10 10

Figure 4.9 The moment 1 22(0, x2), 1412(0, x2 ) for the RN model.

In Figures 4. 10 and 4. 11 we show the shear force %2 and the moment

22in a larger scale. We see that for x2 > 10-  (i.e. of the thickness)

I 21

the slope is 1.666 for %32 and 0.666 for 22. This behavior is related

to the Kirchhoff singularity (also listed in Figure 4.5). We see typically

that Inside the domain, in the distance of" order thickness the Kirchhoff

model describes the character of the solution very well. This is typical
behavior of the solution of every plate model as well as for the plate

(three-dimensional) problem.
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Figure 4.10 The shear force Q32(0, x2).
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Figure 4._11 The moment M22(0, x2
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Figures 4.10 and 4.11 show the behavior Inside w. Figures 4.12 and 4.13

show the shear force %32(x1 , 0) (*e reaction) and the moment M 11X it 0).

45X0 _o_-. ____________
o3x1

~C1x10 4 0.33 T- -

5.3x 10 - --

3 1

o xio
2

0 5x10 - -
2\

rn4 5xlO2

3X10
108 10-7 10-6 105  10-4 10"3 10-2

- x

Figure 4.12 The shear force Q32 (xl O)

3x10
2

102

5x10 -

3x10 -0.455 M

10-

5 2 I -

z 3 - -

~ 1
5X1 1 - --

3 x 16"1

16-2

5X10 - - - - __

10o7 1o4 -o1 1 i-o14 1o0 -3102 10 -1
- x 1

Figure 4.13 The moment M 11(x , 0).
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We see that the singularity in the close neighborhood of the vertex is the

theoretical one as follows from Table 4.5. Nevertheless the Kirchhoff

behavior is not visible because the line x2 = 0 is on the boundary and the

boundary layer Is not captured by Kirchhoff model. The shear force

Q31 (x1,0) does not show the singularity because of the influence of the

boundary condition.

:1x10 2

5 X 10 ------

S3X10

10
5 X1

4 3

10-7 10- 1o- 5  10- 10-3 10-2

Figure 4.14 The shear force Q31 (X1,0).

We have shown the results and asymptotic behavior for the RM model

only. They characterize well the behavior for any n-model as well as the

solution of the three-dimensional solution.

We have seen that in the neighborhood of the vertex of W we have

exactly two kinds of singularities: one in the neighborhood which is smaller

than the thickness and another one -- the Kirchhoff -- which is valid when

the distance is of order of few thicknesses.
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In Section 4.3 we introduced the (classical) Kirchhoff plate model with

Bk
the solution w = uB . The Kirchhoff model Is not able to distinguish

between the hard and soft simple support. Nevertheless the plate problem

(three-dimensional as well as other plate models) converges (in the scaled

energy norm) to the Kirchhoff solution as d-O. See e.g. (21, [6] and

Theorem 4.5.

The solution w of the Kirchhoff model satisfies the biharmonic

equation

DA 2 = q

(4.11) d3E
D= d

12(1 - P)

If w is a polygon and simply support is considered the problem could be

also formulated as follows: Find w e M2() such that (4.11) holds and

(4.12) w = Aw = 0 on r (except vertices of w)

This formulation is equivalent to the one based on the minimization of

BG(u). Hence we can formulate the problem as the system

AW = V

(4.12) Av = D
D

w = v = 0 on F (except on the vertices of W)

and w c H2(M). The conditions that w e H2 (W) is essential. When w is a

convex polygon then w can be found directly by (4.12). In this case v E

H2 (w) and w e H2(M). Nevertheless, when a > x then the solution of

(4.12) yields v e H 1 W) and w E H (w) but w E H2 (w) and so we have to
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add (respectively subtract a singular function 0 e H ( W)) so that w e

H2 (w). We have now

For a < n, a

w = Cr /CC(e) + smoother terms

For a > v :

when -- + 2 < - then
2 (X

w = Cr- r/ a + 2 O(e) + smoother terms

when 2 < -+ 2 , then

w = Cr 2/c(e) + smoother terms

when 2w = -!+2 then

w r21/cCl1 l(e) + C2 02 (e))

Here r,O are polar coordinates with the origin In the vertex of the domain

w and 0(0) Is a smooth function. The case a - is an exceptional angle
2

and then w e H 5c ), c > 0, arbitrary.

The moments M1 .l ,J = 1,2, and the shear forces Q3,, I = 1,2, are

given In the standard form
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Ml D[ a 2--w  82w]

H11  axDr 2 8X2 2
D a2 + Ox 2

.22 =  2w 2
Ox1  Ox 2

(4.13) M12 = D(1-v)( 82w

3 3
D 3 + 3w

Q2= D 2 +
2ax, X2 -8X2

and hence

M Ij = Cr t-l 01,J (0) + smoother terms

j = CrA2-1 0(e) + smoother terms

As before the coefficients A1 and A2  for the Kirchhoff model are given in

Table 4.5.

As was previously mentioned, the Kirchhoff model cannot distinguish

between hard and soft support. We show now that the Kirchhoff model should

be understood as an approximation of the hard support although sometimes it

is used for the soft support also (see below).

In Table 4.15 we show the error of the Kirchhoff model when compared

with the solutions of the (three-dimensional) plate problem of the square

uniformly loaded plate (P = 0.3, d = 0.01) for d = 0.1 and d = 0.01.
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Table 4.15 Comparison of the energy of the Kirchhoff model.

.1/2 • 1/2

d leBw) - cA(uH _ reB(w) - A I
SA (u S  C A(u S )

0.1 20.31% 39.56%

0.01 2.03% 11.87%

In Table 4.16 we show for d = 0.01 some comparison of data from the

Kirchhoff model and the three-dimensional solution.

Table 4.16 Comparison of shear forces and moments of the Kirchhoff and

three-dimensional model (d = 0.01).

Q31(0.4, 0.5) Q31(O. 5 -O, 0.5) M12 (0.5-0, 0.5)

hard support 0. 0. 0.0325

soft support -9.72 -6.79 0.

Kirchhoff 0. 0. 0.0325

In the table we denoted

(0.5-0, 0.5) = lim Q(x 1 , 0.5)
x1<0.5
XI -- 0.5

Kirchhoff model also reproduces the paradox of the hard simple support i.e.

we have w -lw as m-)W (see Theorem 4.2) and [6], [13] and [14].m c

Often in the Kirchhoff theory the reaction e.g. V2 = Q32 (for x =

0.5) is computed from the formula

(4.14) = -
1=32 8X
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see e.g. [18]. This derivation tries to simulate the reaction for the soft

simple support when using essentially the data from the hard support. The

main idea of the standard derivation of (4.14) is following: The virtual

work by the Kirchhoff theory can be written in the form

(4.15) B(w,v) = qvdx - Qnvdt + f (M v + lt ]dt

w

Here we denoted by M the normal moment (for the simple support M = 0)n n

and Mnt is the twist moment. By integration by parts in (4.15) we get

(4.16) B(w,v) =f qvdx - f £ + 2--)vdt + M n=-ndt
J ~ at f ~

w r

Here Mnt is (generalized) derivative with respect to the tangent. We
dt

remark that Mnt is discontinuous by (in the case of the square domain)

piecewise smooth and hence aMnt is a Dirac function (concentrated force) in
dt

the vertex with the value of the "jump" in the moment. In the general case,

for example when a > then the "Jump" is infinite and so it is not--2'

completely plausible to make a reasonable physical interpretation. The idea

in deriving (4.16) is to remove the virtual work by the twist moment but

still keep the same value of the total virtual work. In the case of the

square plate (x = 900) the concentrated force computed through the twist

moment is relatively successful. We get here I = 0.0325 = M12 (0.5, 0.5)

computed with the exact value I defined in Section 4.2 (9 = 0.0290) and

the difference is about 10%.

4.7 Summary and conclusions.

The simple support is an idealization which does not necessarily
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describe the reality well. There are many possible formulations. We

mentioned only two possibilities, the hard and soft simple support. There

are others. For example we mention the notion of the supersoft support which

d/2

is defined so that H(Q) = fu I u3 (xl,x 2 ,x3 )dx3 = 0, (xl,x,) e r}

-d/2

instead u3 (xlx 2 ,X3 ) = 0 as was assumed. This will Influence the solution

by still various basic features discussed earlier for the soft support will

occur.

In the literature sometimes another formulation of the soft support is

used. Here () = {u u(xl.x2,0) = 0, (Xlx 2 ) e F}. Nevertheless this

formulation has no sense because for the 3-dimensional formulation the

quadratic functional G(u) will be not bounded from below and the solution

does not exist. (The essential reason is that under a concentrated load

(reaction) the displacement is infinite.)

Comparing the results we mentioned earlier we see:

(1) The Kirchhoff model gives completely unreliable results in the

neighborhood of the boundary (of size of the plate thickness)

although it gives acceptable results inside the domain. It

approximates much better the hard support than the soft support.

In the close neighborhood of the vertices the Kirchhoff model leads

to the singularities which are very different when compared with

the exact solution of the 3-dimensional problem.

(2) There is a significant difference between the solution for the hard

and soft simple support. This difference is limited to the

neighborhood of the boundary. The size of the neighborhood depends

on the smoothness of the boundary. The soft support does not have

certain paradoxical properties which the hard one has.
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(3) The RM model performs well. The shear factor X has a positive

influence on the quality of the solution. Nevertheless, the

optimal value depends on the concrete setting and aims of

computation. In the given case the value X = 0.87 is close to

optimal.

(4) The singularity of the (1,1,2) model is the same as of the

three-dimensional solution. The RM model leads to a slightly

different singularity.

(5) The singular behavior of the RH model and the n-model is well

described by the theory which is valid in the area of approximately

1 + 1 thickness. In the areas of larger distance the solution has

singular behavior well described by the Kirchhoff model.

(6) The RM model (H = 0.87) performs better than the model (1,1,2)

with X = 1 (not with X = 0.87) but the model (3,3,4) with X =

1 outperforms RM.

(7) The negative reaction of the solution of the three-dimensional

solution, RM model, and n-model differs approximately 10% from the

Kirchhoff negative concentrated reaction.

5. The Plate Problem for various boundary conditions.

In Section 4 we addressed in detail the problem of the square simply

supported plate. In this section we will briefly analyze the essentials when

other boundary conditions are imposed especially with respect to the

differences to the case discussed earlier.
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5.1 The square clamped plate.

Let us consider the square plate with all build in boundary conditions.

Here R(Q) = (u {u = 0 on S). As before, we can similarly define RH

model, n-model, and Kirchhoff model.

Analogous to our previous analysis, we use the matrix B and parameter

It for the RH model. Then as d--O the difference (measured In the

scaled energy norm) converges to zero. Hence the problem has quite analogous

properties as before.

For the numerical analysis we still consider as before the unit square

1
plate, d = 1-' P = 0.3 and for the RH model we will use X( = 0.87, for

the n-model we will use X = 1. In Tables 5.1 and 5.2 we report the moment

M 11(x 1,x2 ) and M2 2 (XlX 2 ) for x, = 0, x2 = 0.2777 respectively. The

moment M1 1(x1,O) is essentially identical (c < 0.1%) for all three models

considered. Hence no error Is present. On the other hand, the error in

M2 2 (x1,O) for the RM model is large (30%), while for the (1,1,2) model it is

acceptable. Here we see a significant difference In comparisoa to the simple

support. Let us mention that the Kirchhoff plate model yields M 11(0, 0.5) =

0.0513, M22(-O, 0.5) = 0.0153, I.e. the identical results as the RM model.

Moment M22 has a boundary layer which is not captured by the RH model.
(n) ,)sott

As in Section 4.2 (see Table 4.4) we define g22 (x1,x ) so that

(n) (0.5 - xI) 1142(x,, x2) -M (x,, x2 )1

ex1,, 2 2x 1 'x2 ) d j RN Wnexp 2 (l'x) =IM0(O.5, X2) -1Mii(0.-5, X2)lI

where the function 12 2 (xlx 2 ) characterizes the boundary layer. We use in

the above formula M2(xlX 2 ) as natural smooth extension of M 2 (Xlx 2 )

from the inside where M 2 = 2" In Table 5.3 we show a few values of

13(1, 1,2) and 13 dim
22 22
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Table 5.1 The moments M1 1 (Xl,0), M2 2 (xl,O) for different plate models.

M1 1 (x1 ,0) M2 2 (x1 ,0)

xI 3 dim RM (1,1,2) 3 dim RM CRHM (1,1,2) c 1 1 2%

0. -0.0229 -0.0229 -0.0229 -0.0229 -0.0229 0. -0.0229 0.

0.2000 -0.0157 -0.0157 -0.0157 -0.0163 -0.0163 0. -0.0163 0.

0.4000 0.0164 0.0163 0.0164 0.0026 0.0027 0. 0.0026 0.

0.4900 0.047j 0.0470 0.0470 0.0141 0.0141 0. 0.0141 0.

0.4930 0.0483 0.0483 0.0483 0.0145 0.0144 0. 0.0144 0.

0.4990 0.0509 0.0509 0.0509 0.0168 0.0152 9.2 0.0170 1.4

0.4995 0.0510 0.0510 0.0510 0.0176 0.0153 12.3 0.0179 2.1

0.4999 0.0512 0.0512 0.0512 0.0207 0.0153 25.3 0.0212 2.8

0.5000 0.0513 0.0513 0.0513 0.0220 0.0153 30.0 0.0220 0.

Table 5.2 The moments M1 1(x1,0.2777), H2 2 (x1,0.2777) for different plate

models.

M1 1(x1,0.2777) M2 2 (x1 ,0,2777)

x 3 dim RM (1,1,2) 3 dim RM CRM% (1,1,2) C 1 1 2%

0. -0.0102 -0.0102 -0.0102 -0.0075 -0.0075 0. -0.0075 0.

0.2000 -0.0075 -0.0075 -0.0075 -0.0058 -0.0058 0. -0.0058 0.

0.4000 0.0083 0.0083 0.0083 0.0015 0.0015 0. 0.0015 0.

0.4900 0.0256 0.0256 0.0256 0.0077 ,0.0077 0. 0.0077 0.

0.4930 0.0263 0.0263 0.0263 0.0079 0.0079 0. 0.0079 0.

0.4990 0.0279 0.0279 0.0279 0.0092 0.0084 9.2 0.0093 1.4

0.4995 0.0280 0.0280 0.0280 0.0096 0.0084 9.0 0.0098 2.0

0.4999 0.0281 0.0281 0.0281 0.0113 0.0084 25.3 0.0116 2.7

0.5000 0.0281 0.0281 0.0281 0.0121 0.0084 30.1 0.0121 0.1
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Table 5.3 The coefficient S2 2 (x1,0) for the clamped plates.

3 din (1,1,2)

Xl 1 2 2 (X1 ,O) 92 2 (X1 ,O)

0.4990 15.43 13.86

0.4996 18.17 13.41

0.4999 23.85 13.32

0.49993 24.13 13.31

0.49999 24.78 13.29

We see that the RH model does not have essentially any boundary layer for the

clamped boundary condition. This follows from (151, [16]. On the other hand

the model (1,1,2) and the plate problem shows a strong boundary layer. The

theoretical strength of the solution of (1,1,2) model is L20 13.1

(see [19]) which is very close to the values shown in Table 5.3. The exact

solution shows still stronger boundary layer.

5.2 The plate with two opposite sides clamped and two free.

In this section we will consider the case when the type of the boundary

condition is changing in the vertex. We will consider the unit square domain

with the sides x2 = ±0.5 to be clamped and x1 = ±0.5 to be free. The

boundary condition in the vertex A - (0.5, 0.5) changes the type from one

side to the other. Once more as d-)0 the solution of the plate problem

(three-dimensional) as well as the n-model solution converges in (scaled)

energy norm to the Kirchhoff solution. See for example arguments in [2],

(6]. In the neighborhood of the vertex A the solution has singular
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behavior. Denoting by r the distance from the vertex A we have

M = C rA-lOj (9) + smoother terms

Q3J C2rA2-1 *(e) + smoother terms

Where A and A2  are different for different models. Their values for our

case are given in Table 5.4.

The value A2 = 1 for the RM and (1,1,2) model means that for this

singularity the angle is exceptional and the shear force Q3j is bounded

in the neighborhood of A.

Table 5.4 The singularity coefficients A1 , A2 for various models.

RM (1,1,2) K
3 dim

1. 0687
A 0.7583 0.7112 +

11 0.4386

0.687
A2  1. 1. +

1 0.4386

Let us now consider the case as In the previous section, namely d =

0.01, v = 0.3. Figure 5.1 shows moment M22 on the line x1 = x2 of the

(three-dimensional) solution of the plate problem as a function of the

distance r from the point A.
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10 -5 10 -4 10 -3 10 -2 10 -1

Figure 5.1 The moment M22 (r) on the line x1 = x2  for the

three-dimensional solution.

In Figure 5.1 we also show the theoretical singularity -0.289 as follows

from Table 5.4. For r > 10- 2  the moment shows the character of the

Kirchhoff singularity where the singularity coefficient is complex.

In Figure 5.2 we show in more detail in log log scale the moment for the

RM model and three-dimensional solution. We clearly see different growth as

follows from Table 5.4.

Figure 5.3 shows the behavior of the moments MlU, and M22 and shear

force Q32 from the RM model. We clearly see the growth in accordance

with Table 5.4.

As we have seen in Figure 5.1, the moment M22 shows oscillations. To

understand this oscillation better we show in Figure 5.4, the moment M22 of

the RM model as a function of Lg r. In addition we show the function

rCcos(O.4386 lg -) as approximations by the function having the Kirchhoff

type singularity. We see very good agreement.
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Figure 5.2 The moment M22 (r) for the RM model and three-dimensional

solution.
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Figure 5.3 The moments M11, 22 and the shear force Q3. of the RH model.
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Figure 5.4 The moment M2 2 of RM solution and its approximation by

Kirchhoff type singularity.

Table 5.5 The moment M22 on xI = 2 for various models.

PHl RHd c RHd c 1,,)c
3dim ~ 0.91 __ 0.91 X = 5/6

0. -0.0407 -0.0407 0. -0.0407 0. -0.0407 0. -0.0407 0.

0.135 -0.0317 -0.0317 0. -0.0317 0. -0.0317 0. -0.0317 0.

0.27 -0.0048 -0.0048 0. -0.0048 0. -0.0048 0. -0.0048 0.

0.36 0.0239 0.0238 0. 0.0238 0. 0.0238 0. 0.0238 0.

0.45 0.0612 0.0612 0. 0.0612 0. 0.0612 0. 0.0612 0.

0.4635 0.0670 0.0670 0. 0.0670 0. 0.0670 0. 0.0670 0.

0.4815 0.0722 0.0722 0. 0.0722 0. 0.0722 0. 0.0722 0.

0.4953 0.0624 0.0626 0.2 0.0627 0.4 0.0627 0.4 0.0621 0.5

0.4968 0.0575 0.0576 0.1 0.0578 0.5 0.0579 0.7 0.0567 1.3

0.4995 0.0630 0.0624 0.9 0.0632 0.4 0.0640 1.6 0.0605 4.0

0.49995 0.1173 0.1125 4.0 0.1140 2.7 0.1154 1.6 0.1143 2.5

0.499995 0.2252 0.1989 11.7 0.2014 10.5 0.2038 9.5 0.2212 1.7
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In Table 5.5 we show some values of the moment M22 for various models.

We see that for x z 0.5 the moments of the model (1.1,2) are better than

for the RH model. It relates directly to the different singular behavior of

the solution from the various models, as follows from Table 5.4.

5.3 Summary and conclusions.

Let us mention some conclusions which follow from cur analysis:

1) The boundary layer behavior of the RH model as described in [151

[16] is very weak for the clamped boundary condition. Nevertheless

the strong boundary layer is present for the three-dimensional

formulation as well as (1,1,2) model. The RH model leads to a very

large error here when compared with the exact solution of the

three-dimensional problem. In contrast the model (1,1,2) gives

very acceptable results.

2) Changing the type of boundary conditions in the vertex usually

leads to different singular behavior of the solution of the RM

model and three-dimensional solution. The model (1,1,2) has the

same strength of the singularity as the three-dimensional solution.

Hence the RH model yields a large error in a very small

neighborhood of the vertex. The structure of the solution is

further complicated by the different strengths of boundary layer on

the sides with different boundary conditions.

6. Additional remarks and conclusions.

The solution of the plate problem is very sensitive to boundary

conditions in the neighborhood of the boundary. Different models lead in
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general to very different boundary layer behavior and singularities in the

neighborhood of the vertices of the domain. We discussed only the behavior

of the moments and shear forces, i.e. of the resultants, the detailed

solution (stresses) has still more complicated structure (see e.g., [201).

The singular and boundary layer behavior of course strongly influences

the accuracy of the numerical solution and requires very careful mesh design.

If the plate is relatively thin, say 1 of the diameter, the__'100

sensitivity of the data inside of w is much smaller than in the boundary

layer. Nevertheless it still can be large.

The design of the model has to be directly related to the aims of

computations. For example the Kirchhoff model typically could lead to

results which are very far from the exact three-dimensional solution if the

data at the boundary are of interest. (These data are reported in any book

about plate theory.) Inside of the domain the Kirchhoff data usually are

relative reliable but it depends on the type of boundary conditions and the

structure of the plate domain.

Reissner-Mindlin model performs well and captures well the boundary

layer behavior for some boundary conditions; nevertheless it fails completely

for some others such as clamped boundary conditions and could yield results

with error of 30%. The (1,1,2) model especially with a shear factor is much

more relevant and gives reliable data also when RM fails as in the case of

the clamped boundary condition. This model also has the same singular

behavior as the solution of the (three-dimensional) plate model, while the RM

often has different singularity. The singularity of the solution of the

Kirchhoff model is completely different when compared with the singular

behavior of the solution of three-dimensional problem.

The selection of the plate model has to be related to the aims of
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computation and the best way is to select it in an adaptive feature from a

family of hierarchical models; in different plate areas. In addition

a-posteriori error of the solution when compared with the exact three-

dimensional solution is desirable and can be made by comparing the results

from different hierarchically ordered models.

Finally we mention that the boundary layer influences the accuracy of

the finite element solution and has to be dealt with. (For example by an

adaptive solver. Furthermore, the finite element solution of the n-model

leads to the locking effects which are dealt with in various ways. In [21]

we have shown that the p-version of FEM for p ? 4 does not show practically

the locking effects.
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